伺服电机的工作原理

发表时间: 2024-03-21 04:45:56 作者: 变压器

  步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制管理系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也慢慢变得多地应用于数字控制管理系统中。为了适应数字控制的发展的新趋势,运动控制管理系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

  永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热较为方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小的体积和重量。

  伺服主要靠脉冲来定位,基本上能这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,以此来实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,以此来实现精确的定位,能够达到0.001mm。

  必须指出,普通的两相和三相异步电动机一般的情况下都是在对称状态下工作,不对称运行属于故障状态。而交流伺服电机则可以靠不同程度的不对称运行来达到控制目的。这是交流伺服电机在运行上与普通异步电动机的根本区别。

  就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。

  交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不可能会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

  步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

  为使交流伺服电机具有控制信号消失,立马停止转动的功能,把它的转子电阻做得特别大,使它的临界转差率Sk大于1。在电机运行过程中,如果控制信号降为“零”,励磁电流任旧存在,气隙中产生一个脉动磁场,此脉动磁场可视为正向旋转磁场和反向旋转磁场的合成。一旦控制信号消失,气隙磁场转化为脉动磁场,它可视为正向旋转磁场和反向旋转磁场的合成,电机即按合成特性曲线运行。由于转子的惯性,运行点由A点移到B点,此时电动机产生了一个与转子原来转动方向相反的制动力矩。在负载力矩和制动力矩的作用下使转子迅速停止。

  直流测速发电机是一种微型直流发电机,其电磁原理与直流发电机相同。本章首先介绍直流发电机的工作原理、结构及特性,然后分析直流测速发电机的特性及应用。

  直流发电机的工作基于电磁感应定律,如图1—1所示为其原理示意图。直流发电机采用固定的磁极和旋转的电枢,有与电枢同步旋转的换向片(换向器)和与换向片相接触的空间位置固定的电刷A和B,换向器与电刷构成机械整流子,转子绕组任一线圈的两边分别接到互相绝缘的两片换向片上。由图中可见,线圈abcd通过换向片和电刷与外电路接通,从而形成一个闭合回路。根据电磁感应定律,当电机转子(又称电枢)在原动机驱动下匀速旋转时,导体内将感应交流电动势为:

  步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

  综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制管理系统的设计过程中要考虑控制要求、成本等多方面的因素,选用适当的控制电机。

  步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

  步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,正常情况下不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

  交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=个脉冲电机转一圈,即其脉冲当量为360°/=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

  与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动gS控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。

  1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的线Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。能够最终靠即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

  对运动中的动态性能有比较高的要求时,需要实时对电机做调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要用伺服电机。

  两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

  2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服能够最终靠通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。

  3、速度模式:通过模拟量的输入或脉冲的频率都能够直接进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也能够直接进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点是能够大大减少中间传动过程中的误差,增加了总系统的定位精度。

  伺服电机内部的转子是永磁铁,驱动器控制的U /W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值作比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。

  答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特征是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。

  伺服呾步迚电机伺服主要靠脉冲来定位基本上能这样理解伺服电机接收到1个脉冲就会旋转1个脉冲对应癿角度以此来实现位秱因为伺服电机本身具备収出脉冲癿功能所以伺服电机每旋转一个角度都会収出对应数量癿脉冲这样呾伺服电机接叐癿脉冲形成了呼应或者叫闭环如此一来系统就会知道収了多少脉冲给伺服电机同时又收了多少脉冲回来这样就能够很精确癿控制电机癿转动以此来实现精确癿定位能够达到0001mm

  交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机一定要具有一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立马停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。

  当电机原来处于静止状态时,如控制绕组不加控制电压,此时只有励磁绕组通电产生脉动磁场。可以把脉动磁场看成两个圆形旋转磁场。这两个圆形旋转磁场以同样的大小和转速,向相反方向旋转,所建立的正、反转旋转磁场分别切割笼型绕组(或杯形壁)并感应出大小相同,相位相反的电动势和电流(或涡流),这些电流分别与各自的磁场作用产生的力矩也大小相等、方向相反,合成力矩为零,伺服电机转子转不起来。一旦控制系统有偏差信号,控制绕组就要接受与之相对应的控制电压。在正常的情况下,电机内部产生的磁场是椭圆形旋转磁场。一个椭圆形旋转磁场可以看成是由两个圆形旋转磁场合成起来的。这两个圆形旋转磁场幅值不等(与原椭圆旋转磁场转向相同的正转磁场大,与原转向相反的反转磁场小),但以相同的速度,向相反的方向旋转。它们切割转子绕组感应的电势和电流以及产生的电磁力矩也方向相反、大小不等(正转者大,反转者小)合成力矩不为零,所以伺服电机就朝着正转磁场的方向转动起来,随着信号的增强,磁场接近圆形,此时正转磁场及其力矩增大,反转磁场及其力矩减小,合成力矩变大,如负载力矩不变,转子的速度就增加。如果改变控制电压的相位,即移相180o,旋转磁场的转向相反,因而产生的合成力矩方向也相反,伺服电机将反转。若控制信号消失,只有励磁绕组通入电流,伺服电机产生的磁场将是脉动磁场,转子很快地停下来。

  答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服最简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列新产品并逐渐完备和更新。交流伺服系统已成为当代高性能伺服系统的主要发展趋势,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。

  由于气隙磁通密度沿圆周近似按梯形波分布,如图l—2(a)所示,因此当线圈随电枢同步旋转时,电刷A、B两端将输出经过机械整流的脉动直流电动图1—1直流发电机原理示意图势,其电动势波形如图l—2(b)所示,如果在两电刷间接一负载,则负载上的电流是脉动直流。

  为了减小电动势的脉动程度,实际电机中不只有一个线圈(元件),而是山许多元件组成电绕组。这些元件均匀分布在电枢表面,按一定规律连接起来。

  步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因没有这种过载能力,在选型时为客服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。